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Abstract

Round Robin is considered as one of the most practically recognized process
scheduling algorithms in CPU scheduling because it is simple and fair. However, the
efficiency of Round Robin depends a lot upon the selection of an optimal time quantum.
If the quantum is too small, then frequent context switches are needed by the CPU,;
therefore, the overhead increases, and thus, the average waiting time for the processes
also becomes long. As a result, system performance is reduced as more and more CPU
time is used up in context switching, instead of task execution. it may behave similarly
to the First Come First Serve (FCFS) algorithm if the time quantum is excessively long,
which leads to extended average waiting time. This paper proposes an improved Round
Robin algorithm by incorporating machine learning, which optimally determines the
time quantum dynamically. More precisely, the K-Nearest Neighbors algorithm will be
used, with NumPy in charge of data processing, for the runtime prediction of an optimal
time quantum considering characteristics of processes. The experimental results showed
a considerable improvement in the parameters of average waiting, turnaround time, and
the number of context switches with respect to the traditional Round Robin algorithm.
Results indicated that machine learning efficiently modifies the predictable scheduling
algorithms to make the scheduling process adaptive and efficient in operating systems.

Key words: dynamic round robin, classical round robin, burst time, machine learning.
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Introduction

An Operating System (OS) serves as the essential interface between computer
hardware and the user, managing and coordinating hardware resources among various
application programs. With the evolution of modern operating systems, which have
transitioned from handling single tasks to supporting multitasking environments, the
role of CPU scheduling has become increasingly vital. In these environments, processes

Copyright © ISTJ iy phel) A9t Alowald i gioen adall 35


mailto:Lolasafoo172@gmail.com
mailto:std.100053@zu.edu.ly
mailto:std.100053@zu.edu.ly

psball gl lll il pald 2

' lC /\g: (1) G5 G552 iy Bl e K
S A\ D 2024/10/30-29 IST.A e

22024/10 /30 g ki gdgall o W y& alg #2024/10/6 :f iy 43 ) gl aSlic) ol

run concurrently, and CPU scheduling determines how processes are assigned to the
available CPUs, directly impacting system performance.

The primary goal of CPU scheduling is to optimize various performance metrics, such
as maximizing CPU utilization and throughput while minimizing response time, waiting
time, turnaround time, and the number of context switches [1]. Scheduling can be either
preemptive, where a process may be interrupted to allow a higher-priority process to
execute, or non-preemptive, where a process runs to completion or voluntarily vintages
the CPU when it requires another resource, like input/output operations. [2].

This paper introduces a machine learning-based approach to optimize the RR algorithm.
By using NumPy for data manipulation and the K-Nearest Neighbors (KNN) algorithm
for predicting an optimal time quantum, we aim to dynamically adjust the scheduling
parameters, improving overall system performance [3].

Among the many CPU scheduling algorithms, Round Robin (RR) is widely recognized
for its simplicity and fairness. The RR algorithm assigns a fixed time quantum to each
process in the ready queue, cycling through the processes in a turn-by-turn manner.
However, the effectiveness of the RR algorithm is heavily dependent on the choice of
time quantum. A larger time quantum can cause the system to resemble a First Come
First Serve (FCFS) scheduler, while a smaller time quantum may result in excessive
context switching, leading to reduced overall efficiency [5].

This paper introduces a machine learning-based approach to optimize the Round Robin
algorithm by dynamically adjusting the time quantum. Utilizing NumPy for data
manipulation and the K-Nearest Neighbors (KNN) algorithm for predicting an optimal
time quantum, the proposed method aims to enhance overall system performance. By
addressing the challenge of selecting an appropriate time quantum, this approach seeks
to strike a balance between minimizing context switches and ensuring efficient CPU
utilization, thereby improving the efficiency of the RR algorithm in diverse processing
environments.

Preliminaries

A program is essentially a passive structure, symbolized by a file containing a
series of instructions. Processes, on the other hand, are active structures that are
identified by a program counter that indicates the next instruction to be performed and
a collection of associated resources. An executable file becomes a process as it is put
into memory, replacing its former state as a program. These processes can then be
assigned different statuses and be given access to system resources, including the CPU:
NEW: A new version of the process has been developed.
RUNNING: The CPU is actively executing the process.
WAITING: The process is awaiting a happening, like the finish of an input/output
operation.
READY: The process is set up and waiting on a processor.

TERMINATED: The process is no longer active after its execution is complete.
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The process in the ready queue will be carried out by the processor. The process status
now becomes running at this point. When the operating process is finished, it will
terminate and change its status to ended. An interruption can occasionally cause the
operating process to be preempted. As a result, the operating process will be forced to
switch to the later-scheduled ready state. Because it is waiting for an 1/0 event to
happen, a running process may switch to the waiting state. Once the I/O event has
finished, the waiting process may return to the ready state. It should be remembered that
multiple processes may be waiting and prepared at the same time, but only one process
may be given a CPU at a time [6].

The term "burst time" refers to the amount of time the process needs to use the CPU.
Arrival time is the moment a process enters the queue to be performed. Waiting time is
the length of time a process has been waiting in the ready queue, whereas turnaround
time is the total amount of time it takes to finish a certain process. Response time: It can
be described as the amount of time that pass by between the process's submission of a
request and its initial response. The scheduler chooses any process from queues within
a routine to execute in a way that optimizes load balancing.

[1].

Related work

The Round Robin (RR) algorithm is a simple and effective CPU scheduling
method that assigns a fixed time quantum to each process in a circular technique. While
it is recognized for its fairness and ease of use, the RR algorithm does encounter some
issues, such as increased context switching overhead when the time quantum is set too
short, or it may behave similarly to the First Come First Serve (FCFS) algorithm if the
time quantum is excessively long. Traditional optimization techniques for RR typically
rely on static methods or situational alters. For example, [7] proposed a framework that
enhances the time quantum through a grid search method. Their approach is statistically
verifiable and shows better performance than existing methods. [8] presented the
Variant On Round Robin (VORR-KNN) algorithm, which expands on the original RR
algorithm. The VORR-KNN seeks to enhance CPU scheduling by minimizing the
average waiting time, average turnaround time, and the frequency of context switches.
It accomplishes this by determining the time quantum based on the median of burst
times, allowing it to better adapt to different workloads.
Dynamic Round Robin (DRR) algorithms have been created to overcome the drawbacks
of static time quantum. These algorithms modify the time quantum based on the
remaining burst time of processes, leading to more effective scheduling. [2] introduced
the "Improved Half-Life Variable Quantum Time with Mean Time Slice Round Robin
CPU Scheduling (ImMHLVQTRR)" algorithm, which significantly improves average
waiting time and turnaround time while also reducing context switching compared to
traditional RR and other existing methods. Another notable development in DRR is the
"Dynamic Round Robin with Controlled Preemption” (DRRCP) algorithm, presented
by [6]. DRRCP reduces unnecessary context switching by implementing a dynamic

quantum time and lowers average waiting and turnaround times. Furthermore, it features
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a mechanism that allows processes that have completed 95% of their execution to finish
without preemption, thereby optimizing CPU resource utilization.

Advances in machine learning in recent times have created new opportunities for
dynamic CPU scheduling optimization. The application of machine learning approaches
to ascertain the ideal time quantum in the RR algorithm was investigated by [3]. Their
study highlights how crucial time quantum is to attaining CPU use efficiency and
fairness. They were able to forecast the ideal time quantum by using regression models
like Polynomial and Linear Regression and classification models like Random Forest
Classifier and K-Nearest Neighbors (KNN). Their findings showed that machine
learning might improve system performance overall and significantly reduce average
waiting times.

Even with these developments, there is still little research being done on the use of
machine learning models like KNN for CPU scheduling optimization. In order to close
this gap, this study presents a new approach that uses machine learning to promote more
effective process scheduling by combining KNN and RR scheduling.

Methodology

We used Visual Studio Code (VS Code) for local development because of its strong
Python support and sophisticated debugging features. We also utilized Google Colab, a
cloud-based platform that offers free access to GPU and TPU processing capacity, to
help with effective model training and experimentation.

Ten randomly generated processes are produced via a Python script we wrote to
imitate the process scheduling environment. The following characteristics apply to each
process:

Process ID: A special number is given to every process.

Arrival Time: Generated at random within a predetermined range to mimic when
each process accesses the system.

Burst Time: A variable that is produced at random to indicate how long each process
needs to execute.

The classic Round Robin (RR) scheduling method goes through each process one after
the other, giving each a fixed time quantum. If a process cannot complete its execution
within this time limit, it is preempted and placed to the rear of the queue. This method
considers scheduling fairness, but it can lead to inefficiencies if the time quantum is not
suitable for the set of operations.

Using previous process execution data, we applied a supervised learning technique, the
K-Nearest Neighbors (KNN) model, to analyze and predict the ideal time quantum.
With the help of this dataset, the model was trained to identify patterns and relationships
within the dataset. We compared the KNN model's predictions to the results of the
traditional RR algorithm under different conditions in order to validate it. By evaluating
the model, it was made sure that it could adjust the time quantum in order to better suit
the aspects of the process balance and increase system efficiency in general.
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Metrics for Comparison

The performance of Classical Round Robin (CRR) and Optimized Round Robin
using K-Nearest Neighbor (ORR-KNN) scheduling algorithms was evaluated using the
following key metrics:
Average Waiting Time (AWT): This parameter shows how long a process typically
waits in the queue before being executed. A lower AWT gives more effective process
handling, making AWT an important indicator of the system's responsiveness. It is
computed by taking the total number of processes and dividing it by the sum of their
waiting times. Since fewer delays mean better user experience and overall system
performance, a lower AWT is preferred.
Average Turnaround Time (ATT): The total duration of time needed for a process to
finish, from the moment it enters the system until it is completed, is known as turnaround
time. Lower values indicate faster processing. ATT gives an overall evaluation of the
scheduling algorithm's efficiency. Turnaround times, or the variation between each
process's arrival time and completion time, are summed up over all processes in order
to calculate it. This measure is very crucial for determining how quickly the system can
begin and complete tasks, especially in situations where there are a lot of processing
demands.
Number of Context Switches (NCS): When the CPU transitions between processes, it
saves the state of the running process and loads the state of the following one. An
important metric is the overall number of context transitions made throughout the
scheduling period, since too many context switches may increase burden and lower CPU
efficiency. NCS was selected to assess how well CRR and ORR-KNN balance system
resources with process execution, since reducing context changes is necessary for
maintaining CPU performance at its most effective state.

Analysis

To evaluate how well the proposed algorithm works, let's look at some examples.
We've run simulations to compare the performance of ORR-KNN with the standard RR
in several scenarios taking into account when tasks arrive and how long they take to
complete.

Using libraries like NumPy to manipulate data, pandas to handle data matplotlib to
generate graphs and, and Scikit-learn to put the K-Nearest Neighbors (KNN) algorithm
into action. We generated a random dataset with 10 processes. Each process had random
arrival and burst times, which simulated a real-world workload for CPU scheduling.
Fig (1) shows a Gantt chart of how CRR runs things. Fig (2) displays a Gantt chart for
ORR-KNN's execution order. Table 3 compares the results of both methods.
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Fig. 2. Gantt chart for ORR-KNN

As shown in table 3 the comparison between CRR and ORR-KNN, the CRR shows long
average waiting time, long turnaround time and more context switch. While on the other
case ORR-KNN results a major reduction in average waiting time, average turnaround
time and context switch.
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Table 3 Comparison between CRR & ORR-KNN algorithm

Metric CRR ( time quantum of 5) ORR-KNN (predicted
guantum time)
Average waiting time 40.80ms 28.00ms
Average turnaround time 47.70ms 34.90ms
Number of context switch 18 10

Results and Discussion

Significant enhancements in CPU scheduling performance are shown when
comparing the classic Round Robin (RR) algorithm with its improved modification,
which was optimized using the K-Nearest Neighbor (KNN) machine learning model.
The application of machine learning enables dynamic alterations to the time quantum,
customized to the particular characteristics of the processes, leading to improved
scheduling effectiveness.
Key performance parameters such as average waiting time, turnaround time, and amount
of context switches all showed improvements. By analyzing previous process data and
predicting an ideal time quantum for every operation, the KNN model made it possible
to use CPU resources more effectively. This enhancement improves system
performance overall by minimizing overhead and reducing delays.
We used these key performance indicators to compare the optimized Round Robin using
K-Nearest Neighbor (ORR-KNN) algorithm versus the classical Round Robin (CRR)
algorithm in order to evaluate its efficacy( see figure 3). The results of the analysis,
which are displayed in Figure 4, indicated a considerable drop in the total amount of
context switches as well as average waiting and turnaround times. The reliability and
predictability of the mentioned advantages were confirmed by thorough tests on an array
of process sets, supporting these findings.

Comparison between CRR &
ORR_KNN algorithm

60

40.8 47.7
40 - 34.9
18
| - .
. o
average waiting time  average turnaround time context switch

B CRR (quantum time 5 B ORR(predicted quantum time

Fig .3. Comparison between CRR & ORR-KNN algorithm
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Performance Metrics vs. Time Quantum
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Fig .4. Performance metrics vs quantum time

The decreased level in average waiting and turnaround times indicates processes are
completed faster and with fewer interruptions. Context switches are being used less
frequently, which points to a more stable CPU environment with less overhead and
interruptions in operations. These results highlight the value of adding KNN to the
ORR algorithm and illustrate how machine learning, in comparison to standard RR
techniques, can greatly improve CPU scheduling efficiency.

Conclusion

This paper presents a unique method for optimizing the round-robin scheduling
algorithm with the assistance of learning machines. By participating NumPy for data
manipulation and KNN for predictive modeling, dynamic data-driven optimization of
time quantum becomes gathered, leading to the enhancement of the performance
metrics. Our results show that machine learning is such a technique with huge potential
to improve classic scheduling algorithms. Some generalizations that might be done in
the future work are in relation to other machine learning models or an improvement in
the optimization process.
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